Kamenev type oscillation criteria for second order matrix differential systems with damping
نویسندگان
چکیده
منابع مشابه
Kamenev-type Oscillation Criteria for Second-order Quasilinear Differential Equations
We obtain Kamenev-type oscillation criteria for the second-order quasilinear differential equation (r(t)|y′(t)|α−1y′(t))′ + p(t)|y(t)|β−1y(t) = 0 . The criteria obtained extend the integral averaging technique and include earlier results due to Kamenev, Philos and Wong.
متن کاملKamenev Type Theorems for Second Order Matrix Differential Systems
We consider the second order matrix differential systems (1) (P(t)Y1)'+ Q(t)Y = 0 and (2) Y" + Q(t)Y = 0 where Y, P , and Q are n x n real continuous matrix functions with P(t) , Q(t) symmetric and P(t) positive definite for t E [to, cc) (P(t) > 0 , t > to) . We establish sufficient conditions in order that all prepared solutions Y(t) of (1) and (2) are oscillatory. The results obtained can be ...
متن کاملInterval oscillation criteria for matrix differential systems with damping
Using a generalized Riccati transformation, some new oscillation criteria of linear second order matrix differential system with damping are built by the method of integral average. These results are based on the information on a sequence of subintervals of [t0,∞). 2000 Mathematics Subject Classification: 34C10.
متن کاملOscillation Criteria for Nonlinear Second Order Matrix Differential Equations
Abstract. The object of this paper is to present sufficient conditions for the oscillation of certain solutions of the second order, nonlinear matrix differential equation. The oscillation criteria obtained here improve the recent results of the author and E. C. Tomastik. The methods employed in the paper extend a technique introduced by H. C. Howard and for the special linear version of the no...
متن کاملA Note on Kamenev Type Theorems for Second Order Matrix Differential Systems
Some oscillation criteria are given for the second order matrix differential system Y ′′ +Q(t)Y = 0, where Y and Q are n× n real continuous matrix functions with Q(t) symmetric, t ∈ [t0,∞). These results improve oscillation criteria recently discovered by Erbe, Kong and Ruan by using a generalized Riccati transformation V (t) = a(t){Y ′(t)Y −1(t) + f(t)I}, where I is the n × n identity matrix, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 2005
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap85-2-4